Research Progress

Sensible and latent heat flux response to diurnal variation under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau

Updatetime:2012-06-07From:

【Enlarge】【Reduce】

The relationship between sensible and latent heat flux and diurnal variation in soil surface temperature and moisture under four freeze/thaw soil conditions was investigated using observed soil temperature and moisture and simulated sensible and latent heat flux. The diurnal range of latent heat flux had a similar temporal change pattern as that of unfrozen soil water at depths of 0–3 cm during the freezing stage. Also, there was a better relationship with the diurnal range of unfrozen soil water at depths of 3–6 cm during the thawing stage. Diurnal variation in latent heat flux was significant and depended mostly on solar radiation during the completely thawed stage. However, while diurnal variation in solar radiation during the completely frozen stage was significant, for latent heat flux it was quite weak due to low unfrozen soil water content. Thus, diurnal variation in latent heat flux depended mostly on unfrozen soil water content during this stage. During the freezing and thawing stages, diurnal variation in latent heat flux was also significant and depended mostly on diurnal variation in unfrozen soil water content. However, the impacts of air temperature change from solar radiation on latent heat flux could not be ignored.

Download

Appendix

Copyright © 2002 -
Northwest Institute of Eco-Environment and Resources